Search results for "Data sampling"
showing 3 items of 3 documents
A critical review on the implementation of static data sampling techniques to detect network attacks
2021
International audience; Given that the Internet traffic speed and volume are growing at a rapid pace, monitoring the network in a real-time manner has introduced several issues in terms of computing and storage capabilities. Fast processing of traffic data and early warnings on the detected attacks are required while maintaining a single pass over the traffic measurements. To palliate these problems, one can reduce the amount of traffic to be processed by using a sampling technique and detect the attacks based on the sampled traffic. Different parameters have an impact on the efficiency of this process, mainly, the applied sampling policy and sampling ratio. In this paper, we investigate th…
Toward fast and accurate emergency cases detection in BSNs
2020
International audience; In body sensor networks (BSNs), medical sensors capture physiological data from the human body and send them to the coordinator who act as a gateway to health care. The main aim of BSNs is to save peoples' lives. Therefore, fast and correct detection of emergencies while maintaining low-energy consumption of sensors is essential requirement of BSNs. In this study, the authors propose a new adaptive data sampling approach, where the sampling ratio is adapted based on the sensed data variation. The idea is to use the modified version of the cumulative sum (CUSUM) algorithm (modified CUSUM) that they previously proposed for wireless sensor networks to monitor the data v…
Nowcasting Global Economic Growth: A Factor-Augmented Mixed-Frequency Approach
2014
Facing several economic and financial uncertainties, assessing accurately global economic conditions is a great challenge for economists. The International Monetary Fund proposes within its periodic World Economic Outlook report a measure of the global GDP annual growth, that is often considered as the benchmark nowcast by macroeconomists. In this paper, we put forward an alternative approach to provide monthly nowcasts of the annual global growth rate. Our approach builds on a Factor-Augmented MIxed DAta Sampling (FA-MIDAS) model that enables (i) to account for a large monthly database including various countries and sectors of the global economy and (ii) to nowcast a low-frequency macroec…